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THE FORMATION OF BINARY STARS

L. E. Gurevich and B. Yu. Levin

ABSTRACT: The formation and disruption of binaries in a
near-equilibrium star cluster is analyzed. The authors
conclude that in certain star clusters the mean star den-
sity is high enough for the formation of large numbers of
binaries through random encounters of single stars. Mecha-
nism of "evaporation'" from such clusters is proposed to
explain the relatively large numbers of binaries outside
clusters.

We know that gravitational systems cannot be in a state of complete, /273
statistical equilibrium. However, the fact, established by V. A. Ambartsu-
myan [1], that the time of dissipation of a gravitational system considerably
exceeds the time of relaxation 1leads to the possibility of almost
equilibrium states of such a system. This work is dedicated to the
question of the formation and disruption of binary stars in such almost
equilibrium states in the galaxy and individual star clusters.

The main conclusions are as follows:

1. The time during which the equilibrium number of star pairs is formed
due to approaches of three stars is comparable with the time required for
their disruption due to random encounters with single stars.

2. The average evolution of a pair due to random approaches
by surrounding stars depends on whether the pair is 'strong'" or ''weak," i.e.
whether the energy of its orbital movement is greater or less in absolute
value than the mean energy of the approaching movement of stars approaching
at a single degree of freedom. Strong pairs tend to decrease a, i.e.
'"become stronger," while weak pairs tend to increase a, i.e. to separate.

1 Numbers in the margin indicate pagination in the foreign text.



3. The time of formation of weak pairs is less than the time of
relaxation, so that they can be formed in star systems in a statistically
equilibrium quantity. The time of formation of strong pairs is greater than

the relaxation time and increases approximately as 1/a3/2. Therefore, in
star systems, pairs for which a is an order of magnitude less than

2a, -- the boundary value between strong and weak pairs -- can form in
almost equilibrium quantity.

4. Analysis of equilibrium dissociation of star paris in consideration
of the gravitational interactions between components shows that the
equilibrium state of the star systems should correspond to a unique
""condensation" of the stellar gas, i.e. the formation of a single, close,
multiple system.

Actually, this state is not achieved, since in correspondence with
item 3 above the time of formation of very close pairs increases without
limit as the length of the half axis decreases.

5. The abundance of binary stars in the neighborhood of the sun and
the decreasing nature of the curve of distribution by lengths of half axes
can be explained quantitatively by the assumption that these pairs were
formed in galactic star clusters and '"evaporated" from them.

This assumption agrees with the opinion recently stated by
V. A. Ambartsumyan that the formation of stars occurs in stellar associ-
ations.

1. Kinetics of establishment of statistical equilibrium. The time
during which a considerable share of the equilibrium number of binary stars
is formed due to random approaches of three stars is comparable with the time
of disruption of pairs by random encounters with surrounding stars, estimated
for wide Ambartsumyan pairs [2].

Let us analyze a stellar system in which the number of binary stars is
much less than the number of single stars. Then, the formation of pairs by
capture and disruption of pairs will occur in the overwhelming majority of
cases under the influence of single stars. Captures and separations under
the influence of other pairs can be ignored. The change in the number of
pairs is determined approximately by the equation:

dn,, 2
= qnZ— Bnnq..
dt B 12

here n is the number of single stars per unit volume, while n12 is thc number

of pairs within a certain interval of large half axis lengths a. We limit
ourselves in (1.1) only to captures and separations, attempting no analysis
of the detailed kinetics involved in gradual changes of half axes, since our
purpose is only to produce a qualitative estimate of the probability of
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capture.

In the equilibrium state dnlz/dt = 0 and, consequently,

0
u "2
| T 1.2
iR (1.2)
BB
where the zero represents the equilibrium state. Since the share of binary
stars is small, practically n = ng. Considering this and substituting
(1.2) into (1.1), we produce:
‘.i_'_'_.l.!= n° "‘"’i( ’
Fr B”"(,*z 1) (1.3a)
from which
=n0 _— TNl ) . ——— \“
= i (1 — et = nfy (1 —emtit), (1.3b)

If the formation of a pair does not occur, then (1.3a) takes on the form:
dnyy g '
o = Prodg-

From this we see that t0 = l/Bn0 is the time constant for destruction of

pairs by ''shocks'" of single stars. Formula (1.3b) shows that this is also
the time of their formation in a quantity near the equilibrium quantity.
Therefore, the study of the kinetics of the formation of pairs can be
replaced by a study of the kinetics of their disruption.

In a star system in which movement is distributed without order, the
average result of the approach of two stars is that the star with greater
energy transmits energy to the star with lesser energy. Thus, in corre-
spondence with the H-theorem, the energy tends to approach equilibrium.

Suppose stars of mass m, and m, have velocities vy and v, before the

approach, v‘l and v'z after the approach. If we represent the velocity of

the center of inertia by Ve and the relative velocities before and after

approach by v and »', the change in energy of the first star will be
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where ¢ and ¢' are the angles (ch) and (vcv'). Let us construct, using Ve /275

v and v', a spherical triangle with dies ¢.¢' and x (scattering angle vv')
and angle ¥ between sides x and ¢. Then

CoS @' = c0Sp cos  + sin gsin x cos
and therefore
cos¢ — cosqp = — 2 cosgpsin? %— + 2sin ¢ cos —?)E-sin—g—cos‘p.

Since the values of ¥ are equally probable, then on the average
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+ (my — my) v,v,] sin’% .

As we know

|
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where r is the citing distance, v is the gravity constant. Averaging with
respect to all values of angle (vlvz) and considering that v also depends

on this angle, we produce:
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The 1limit expressions for AE can be arbitrarily represented in a clearer
form:

AE, =4 Mama Ey—E
1 (my + m,)? ) r’v‘l ' / (1.4a)

1+ Y? (ml+ m))’

which is correct either where my = m, or where r = 0, or where vl ~ 0 or
v, 0

We will consider a pair to be ''strong'" if the energy of relative
movement u = —7m1m2/23 is greater in absolute value than 8 /2, the mean energy

per degree of freedom (''gravitational temperature' of the approaching
movement of the stars 6 = mvz/S). We will consider a pair to be "weak" if
lu] < 6/2. The value of half axis for which |u| = 6/2 will be represented by

2a0

2aq = 17ams _ Bymymy

mut (1.5)

Thus, the strong or weak nature of a pair is determined as a function of the
"temperature' of the stellar medium in which it is located. The basis for
these terms will be explained in the following.

Encounters of strong and weak pairs with other stars lead on the
average to essentially different results. In the case of a weak pair
(a > 2a0) the energy of the relative (internal) movement is small in

comparison with the energy of the oncoming star, equal on the average to
(3/2)0, and in comparison with the same energy of movement of the center of
inertia of the pair.

But then we can consider approximately that each star of the pair has /276
on the average energy < (3/2)0 (or with equal mass, energy (3/4)8), and
therefore, according to (1.4), the average result of the approach will be an
increase in the energy of the pair, i.e. an increase in the size of the
orbit. In the following, we will limit ourselves to rough estimates.
Considering for simplicity that all of the stars being analyzed have

identical mass m and assuming that on the average |E2 - Ell ~ 0, we produce
from (1.4)
RE, ——° .
4 Yﬂml

The pair will be broken up if the energy received by either component of the



pair becomes equal to the coupling energy Ym?/2a. This may occur as a
result of one approach to a sighting distance such that AE = ym?/2a, from
which

72— /w-m: 2a0 1) 8Ya9

Y'n’ (1.6)
since for weak pairs Ym?/2a < 6. The average waiting time for such an
approach will be

_t v
“ L nynr® 8nyna® °
. my 2 . . . .
Since 8 = =z then, ignoring the difference between the average velocity
and the relative velocity, we produce:
¢ __;3'4*0
17 Sxymna’ (1.7)

In this calculation we assumed that r < a, otherwise the oncoming star, in
place of simple transmission of energy to one component of the pair, will
create a '"tidal" type force which will have little effect where r > a. It is
easy to see that inequality r < a 1s fulfilled for weak pairs. Actually,
according to (1.6), substituting v2 = 30 /m,

2 8-{0 8 ym?*
( T avt T 9—W<1' ,

If the disruption of the weak pair occurs due to many ''weak'" collisions, then
in our approximation |E, - E | ~ 6 it is sufficient to determine

2
BT T A ‘ 2
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On the basis of the above, T, = 2 Here

ravt 3 af
vt \2 ‘rm’) >1,



so that

dE _ 8ny*m?®nf av?
dt u3 nz ymn*
-«

Therefore, the time during which the energy of the pair increases by the
value of the coupling energy Ym?/2a, i.e. the time required for disruption
of the pair, is equal to

3
t = L= v | (1.8)

av av
16 7yna6 in Pym 16 nymna In 2ym

More precise calculation of the mean value of the square of the change in
energy over the relaxation time AE2/r , determined by the "coefficient of
diffusion of energy into space' decreases this expression slightly, although
even without this the expression is somewhat less than (1.7).

Consequently, disruption of weak pairs occurs primarily due to ''weak"
i.e. distant encounters, and the time required for disruption is inversely
proportional to the length of the longer half axis. Obviously, where

a > ZaO, time t, is much less than the relaxation time t. of the star system

in which the pair is located. This follows from the fact that the former is
the time during which the energy of the pair changes by the value of the
coupling energy, while the latter is the time during which the energy

changes by much larger quantity 6. This is especially true since t is much

less than the dissipation time of the system. Therefore, weak pairs can be
formed in a star system in equilibrium quantity.

Let us go over to analysis of very strong pairs. 1In this case, the
kinetic energy of the relative movement is greater than 6, i.e. on the
average greater than the energy of an oncoming star until it approaches the
binary star. Due to this, the average result of an approach will be
transmission of energy to the oncoming star, i.e. a reduction in the size of
the orbit of the pair. Thus, strong pairs, in case of random approaches,
generally become stronger. However, formula (1.4) and this conclusion from
it are true only for rather close approaches. The reason for this is that
(1.4) was concluded for the approach of two free masses, while actually the
component of the pair which is approaching the oncoming star is coupled to
the other component of the pair. Therefore, (1.4) is true only for rather
brief approaches, during which the duration of the effective interaction of
the approaching stars is much less than the period of the orbit of the binary
star. This condition will be fulfilled if

r a
T<"7°_’
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where V) is the orbital velocity. Since for very strong pairs Vg VAm/a

is much greater than the average velocity of oncoming stars, v = Vos and

therefore the condition produced is equivalent to the previous condition
T ~ a, used in concluding (1.6).

With great sighting distances and times of interaction, the approach
will occur '"adiabatically'" in the sense that the energy taken from the
oncoming star from the orbital movement will decrease rapidly. Therefore,
it is sufficient to integrate up to ¥ = a. However, in this cas

i

(1.4) a%vt/4y%m?2 ~ 1, while the energy transmitted AE, ~ E_, i.
0 1 1

of the strong pair is transmitted with a single approach to sighting
distance < a. In other words, during a single such approach, an essential
"strengthening'" of the pair can occur. The waiting time for such an event is

in

e
e. the energy

= 1 ~ 1 - a a="h \
2™ numa® = nugna® = mnat 7——mN : (1.7)

Since where a > 2aO the time of formation of the pair is determined by

formula (1.6), while where a < 2a, it is determined by formula (1.7), where

0

~ Zao both formulas should give the same order of magnitude for the /278

a
formation time: tz(ZaO) =~ tl(ZaO).

Let us compare the time t, of formation of a strong pair with a large

half axis a and time t, of formation of a pair with '"critical" half axis

2a0. According to (1.7)

t_3'~<2(10 s
o “\a )

‘But for pairs with half axis 2a_ the disruption time, and consequently the

0

time of formation according to the definition of a,, is comparable with the

0’
relaxation time. If we accept the estimate of V. A. Ambartsumyan [1],
according to which the time of dissipation is two orders of magnitude
greater than the time of relaxation, during the time of dissipation of the
star system, strong pairs will form for which the half axis is 10 to 20 times
less than the critical value 2a0. Even stronger pairs will form in a
quantity amounting to only a small fraction of the equilibrium quantity.

The conclusions produced in this paragraph contradicted the erroneous
conclusion of Jeans [3], who stated that when a weak pair approaches a
bypassing star the increase in orbital velocity will be accompanied by a
decrease in the period (and consequently a decrease in the large half axis),



while strong pairs, as a result of the decrease in orbital velocity, will
show an increase in period (lengthening of large half axis). Obviously,
this contradicts mechanics, as well as the nature of the equilibrium
distribution function of pairs by periods which in the case of the ''mean"
period of Jeans has no maximum at all. The distribution function by half
axis even has a minimum at this point.

2. Statistical equilibrium of binary stars. According to a general
principle of statistical physics, the probability of location of a system
in a certain interval of states is determined by the phase volume Z of this
interval, calculated considering the 'weight'" energy factor e~¢ kT;

"z =\¢ "ap) ag),

where (dp) and (dq) are the products of the differentials of the impulses
and coordinates of the system. Let us apply this principle to binary stars,
which may be either in the ''coupled" or '"free'" states corresponding to
negative and positive energies, calculating the number of stars and binary
stars per unit volume. For coupled pairs, the weighted phase volume is
divided into factors related to the approaching movement of the center of
inertia (Zc) and the relative movement of the components of the pair (212)

so that the number of pairs of stars types 1 and 2 in a certain interval of
states per unit volume will be

\

Ny ™ ZypZe | \l

(~ represents proportionality). For free pairs we produce the product of
the phase volumes of both components:

Ny & ZyZy,

from which
YAV
Ny, o et
e Z 7 (2.1)

If the "gas" of stars can be considered ideal, then in calculating Z1

and Z2 we need not explicitly consider interactions between stars (the

gravitational field is included only implicitly through the average kinetic
energy of the stars or the ''temperature' 6 ), i.e. approaches during which /279
mutual potential energy is comparable with the average kinetic energy.



This condition leads to the fact that 212 < Z1 and 22 or n12 < n1 and n2.
Then

Zy= 2mm 0" Zy = 2em0)" Z, = [2n (m1+m2) 91 o
o - ',:.
2= fe o dp dpydpdi"l/dz '}Q‘

o .
£ ! RS

Let us introduce the Delone variables [4] for relative movement, i.e. for
movement of a body with mass mlmz/(ml + m2) in the field of a center of

attraction with mass m1 + mz:

N ' '
. myms — . —e .
f‘:%/ “2va; G=LY1—¢ H=Geosi=LY1—¢cosi,

my = nig

=

where € is the eccentricity, i is the inclination of the orbit. The clear
sense of these variables is: L is the moment of the quantity of movement in
a circular orbit of radius a, G is the moment in an elliptical orbit with
eccentricity €, H is its projection on the direction separated. The
canonical conjugate angular variables are: 7, the mean anomaly; g, the
distance of the periastron from the node, h is the length of the ascending
node. Since u = —7m m /2a

b, . RS
Zpy == Ve " 4L dG dH dldg dh = 83 Se o dL,,g dGS dH =
0 -G
S . wimd E T
= 8 e deL_4a'/,__ 2a0 —
8% 8 S ) Va da.

Substituting the expressions for the statistical integrals Z into
(2.1), we produce

s @3 Yty ey g,

__:,: Nf/u /‘f'mlm.,>/ S 220 Va da~4(7:d S Vada » (2.2)

(2% a,

The differential equation for the distribution of pairs consisting of stars
of these types by large half axes is

10



Ymm, )

Qy .
din —;{-rwnlm e 5 . Y, o
= V2 = > ]/a da =4 (rap) " e ﬁda. (2.3)

We note that the distribution by periods, equivalent to (2.3), was
produced by Jeans [3}, although with an accuracy to an undefined factor.
V. A. Ambartsumyan [2, 5] gave an approximate estimate of this factor.
Completely analogously we can find the distribution for typical trinary

stars consisting of pairs (1,2) with half axis a plus a distant satellite
(3) rotating about the pair in an orbit with half axis a'. In the interval

e, .
<<y, u<dla -

we produce a number of trinary stars (per unit volume)

’ ’

T s %l o "y ‘ ; — 2'4
n,nl:n, = 4 (ra,) S e Vada-4 (ra,) ! S e Va da, ( )
a, a;
where
a' =— Y(’”‘l +m3)m, .
[V} 26“‘ .

For typical quaternary stars, consisting of the two closest pairs, in
the expression for n1234/n1n2n3n4 in the righthand side a cofactor of the

same structure appears, and so forth for stars of higher degrees of
multiplicity.

Let us note two properties of the equilibrium distribution (2.3):

1) The more massive stars in statistical equilibrium form paris in
higher percentages (therefore, the luminance function for pairs should be
somewhat different than for single stars). Also, the greater the mass of
the stars, the greater the predominance of close pairs. Both of these
conclusions are confirmed qualitatively by observations [6].

2) The distribution function first decreases as the half axis increases

to a = 2a0, then increases. This value a = 2a0 is the boundary between

pairs having a tendency to become stronger and pairs having a tendency to
expand. We can see from the distribution curve that this involves a
tendency to transition from statistically less probable states to statistic-
ally more probable states.

/280
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In the area of the sun v = 2-10° cm/sec and for stars of solar mass

2a0 = 101% cm = 7 astronomical units, increasing for massive supergiants to

hundreds of astronomical units. However, in star clusters, where
v ~ 10° cm/sec and less, 2a0 increases to thousands of astronomical units

even for stars of medium mass, i.e. the dipping portion of the curve
encompasses almost all the observed range of large half axes.

In order to estimate the complete share of pairs, we must integrate

(2.2) with respect to all values of a from a; ~ 10*! cm for the closest

spectroscopic binaries to the largest observed stars (a2 = 31017 cm).

This integral can be calculated as the sum of integrals with respect to

2a a
strong and weak pairs: fo + f7. Since a, < a,, We can assume in the first
ay 2a0

integral a = a, + ¢, and expand the index ao/a = ao/al(l - E/a1 ),
replacing Va by va,, which is proper due to the rapid decrease in the
exponential function, and replace the upper limit of 230 by infinity for the

same reason. Since 230 < a,, we can replace the exponential factor by unity
in the second integral, and replace the lower limit of 2a0 by zero. Then

s V.'a? 23 : %) 2.5
m=4(nao) (aoe +Ta2 ° ( . )

In the area of the sun for moderate stellar masses m = 0.4mo, the indicator
ao/a = 102. For massive stars and in star clusters where 8 and v are

considerably less, this indicator increases. Thus, we come to the following
conclusion.

Statistical equilibrium under galactic conditions corresponds to the
fact that practically all binary stars must be quite close. The colossal
value of the exponential function, which cannot be compensated by the pre-
exponential factors, shows that in statistical equilibrium with the
"temperature" 6 of the galaxy (and particularly at the '"temperatures'" of the
star clusters) all of the stars should become binary, trinary and similar
aggregates, i.e. '"condensation" of the star gas should occur. Here, the
formulas which we have written cease to become quantitatively correct, since
the single and multiple stars cannot be considered "atoms' and '"molecules'" of
an ideal gas, but rather we must consider thé interactions in the integrals
for the translational degrees of freedom in (2.1) but, nevertheless, the
qualitative conclusion remains correct.

12
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This "condensation'" cannot occur since, as we know, the time required
for formation of strong pairs is very great, increasing without limit as the
half axis length is decreased, and therefore becoming much greater than the
time of dissipation of the system. To this, we must add cosmogonic factors
(in the narrow sense of the term), for example evolution of individual stars.

For rather broad, weak pairs, equilibrium is established rather
quickly, so that the conclusions based on our analysis of statistically
equilibrium states can be applied to them. Ambartsumyan showed that in the
area of the sun the number of broad pairs is many orders of magnitude
greater than the equilibrium number corresponding to the conditions in the
area of the sun. However, the distribution of a throughout the entire range
which can be observed (up to 2-10% astronomical units) has a decreasing
nature. Both of these facts can be explained by assuming that all of the
pairs which we can observe were formed in the galactic star clusters and
then "evaporated" from them. Due to the low '"temperature'" 6, and to a
certain extent due to the high density n of the galactic clusters, the
equilibrium number of broad pairs for the clusters is many orders of
magnitude higher than the equilibrium number in the area of the sun and is
comparable to the number which we actually observe.

Let us now demonstrate that the hypothesis of the formation of binary
stars in star clusters quantitatively explains the high percentage of binary
stars with half axes in thousands of astronomical units observed. Since-

the interval of values of a which interests us is near the value of ao for -

the clusters, the approximate method of integration of (2.2) which we used
in producing (2.5) cannot be used here. However, we can use the fact that,
as numerical calculations show, in the area 0.5 < a/aO < 5, the function

a0 . . . .
e /%JE changes slowly. Therefore, for an approximate estimate in this
area we can consider that

Go

a” ‘
S e’ V&‘dazeﬁo(a”—sa’). |
a’ ' ) '

In this case

Mia o :‘a %1 — . ”' - (2.6)
;;;é;f@ﬁm%)’ S ¢ Vadaxbex haZ(a" — a).

. e

With a density of satellite stars in the cluster of n, = 10 stars per
cubic parsec and a, = 4000 astronomical units (v = 10° cm/sec,-mlm2 = m%o)

the share of binéry stars with half axes from 2,000 to 10,000 astronomical
units is

13




R12 ~ 10—2 ,

:i ;'#1

which corresponds to the observed facts.

In analyzing the process of formation of broad pairs in star clusters,
we must keep in mind that the clusters dissipate and become denser. Pairs
with long half axes a should be formed before the mean distance between
stars in the cluster becomes less than a. Is this condition actually
fulfilled? Suppose the initial density of the cluster is equal to 0, and /282
a = £n61/3 where n61/3 is the mean distance between stars, £ is a number
less than unity. We are interested in the time after which the density will

be such that a = En(—)l/3 = n-l/s, from which

= = E-';i s\

iy

Analysis of the evolution of clusters [7] shows that

RN =7 f
no_<.“““) o !!

Ja

where t. is the time of complete dissipation and, consequently, the time
which interests us is

2l

). \

It is necessary that the time of formation of the broad pairs which we are
analyzing tl be much less than this time. Obviously, this requirement will

t= td(i-—- g

practically always be fulfilled, since t, < t. <t

1 d’

In formula (2.6) we did not consider the pairs which were strong
under the conditions of the cluster. However, as was estimated at the end of
§1, during the time of dissipation of the cluster, pairs will form for which
a is an order of magnitude less than a,- The exponential function in

(2.3) for such pairs is quite large, and therefore the total share of the
pairs is increased and approaches unity. Data from observations in the area

14



of the sun indicate over 30% multiple stars!.

Considering that the share of stars of higher multiplicity decreases
approximately in a geometric progression, we should expect approximately 10%
trinary stars, approximately 3% quadruple stars, approximately 1% quintuple,
etc. Since the reduction in distance between stars is accompanied by an
increase in the exponential function, a considerable portion of the stars of
higher multiplicity should form trapezoid type systems.

Thus, we come to the conclusion that at least a unit share of all the
stars in the galaxy came from star clusters. The close connection between
this conclusion and the recently stated hypothesis of V. A. Ambartsumyan
that the stars of the flat subsystems, and possibly all stars, were formed
in associations [8], is obvious.

As was noted above, massive stars form pairs in greater numbers, and

for massive stars 2a0 may reach values in star clusters equal to the maximum

observed half axes of the orbits of star clusters. Therefore, the ascending
portion of the curve of distribution of a may be totally absent in clusters
where binary stars are formed. On the other hand, after the evaporation of
a pair, it finds itself in conditions under which the dissociation of pairs
occurs much more frequently than the formation of new pairs. The broader a
pair, the more rapidly it will dissociate under the influence of random
callisions with other stars. Therefore, the decreasing nature of the
distribution of a in the area of the sun may be explained either by the
conditions of formation of binary stars in clusters, or by the conditions of
their dissociation after '"evaporation' from the clusters.

The process of evaporation of broad. pairs is not accompanied by their
dissociation. The evaporation of pairs, like the evaporation of individual
stars, from clusters occurs as a result of the tremendous numbers of very /283
weak energetic forces occurring at median or near median distances between T
stars. Each such interaction transmits energy, this energy being not only
less than the mean energy of the stars, but even less than the energy of the
very broadest pairs. Therefore, they do not dissociate, but rather remain in
equilibrium number.

The first to evaporate from clusters are single stars of mean mass m
and pairs of light stars with the same total mass. Gradually, the process
encompasses more massive and less massive single stars and, simultaneously,

1 Under the conditions in the area of the sun all pairs with a > 10-20
astronomical units are weak, their number exceeds the equilibrium number,

and therefore in practice only dissociation will occur here. Pairs with half
axes not exceeding a few astronomical units are also strong in the area of
the sun, and their number has a tendency to increase.

15



the corresponding pairs. If the cluster consisted of stars of identical
mass, the evaporation of pairs would be strongly retarded.

In conclusion we note that our hypothesis consists of a synthesis of
apparently contradictory suggestions concerning the general origin of the
components (V. A. Ambartsumyan) and the formation of pairs by the capture
mechanism (0. Yu. Shmidt), since we believe that the components were formed
in a single association, then joined into pairs by gravitational capture
within this association. If the second process, that of formation of binary
stars, occurred at an earlier stage, when the first process, that of the
formation of stars, had not yet been completed, friction might be very
important in the kinetics of captures.

3. Binary stars in rotating clusters. Let us analyze the statistical
® cquilibrium of binary stars in star clusters, rotating as a unit whole, i.e.
with nonzero summary moment of the quantity of movement. Let us assume that
the angular velocity is independent of the distance from the axis of the
cluster. In a frame of reference rotating together with the cluster, the

o . . . . . . . . -uq/0
equilibrium distribution will be the ordinary distribution e uy/ , where the
expression for energy u, includes the '"centrifugal energy" [9]:
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Let us go over to the nonmoving frame of reference: V=V - W X r. Then
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where H, as in §2, represents the component of the moment of the quantity of
movement of the pair along the axis of rotation of the cluster. Therefore
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Introducing the variables a, € and i in place of L, G and H, we have:
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so that
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In these formulas, the movement of the center of inertia of the pair is
separated, so that moment G relates only to the internal movement of the
pair.

First of all, (3.2) gives us the uneven distribution of orbit inclin-
ations. It is simpler not to analyze the function

but rather the density of the poles of the orbits in the celestial sphere /284

©G s ,
Ay 0O | (3.3)
dcos i .

The unevenness of this function appears more sharply, the greater the
moment of the movement of the pair G. If all binary stars in the area of
the sun came from the same rotating cluster, we can find for them an axis
relative to which dnlz/(d cos i) has the form of (3.3). If they came from

many clusters, whose axes were symmetrically distributed about the axis of
the galaxy, the density of the poles of the orbits of all binaries will also
have an axis of symmetry corresponding to the axis of the galaxy.

In order to establish the distribution of eccentricities €, let us
integrate (3.1) with respect to H from -G to +G or (3.2) with respect to i
from 0 to 7:
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This expression contains the correlation between the large half axis and the
eccentricity. Therefore, it is possible in principle to use observations of
this correlation to estimate the mean angular rate of rotation of the
clusters from which the pairs being analyzed originated. For pairs with
small moment G < 0 /w,
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i.e. the rotation of the clusters, naturally, is not added. For pairs with
large moment G > 6 /w, the distribution function decreases with increasing
eccentricity, so that the share of pairs with low eccentricity is greater
than in the preceding case. Thus, wide pairs should more frequently have
low eccentricity than close pairs. Observations show a correlation of the
reverse character. The reason for the divergence and the possible role of
selection remain unknown.

Finally, rotation decreases the steepness of the drop in the distribu-
tion function with increasing half axis for strong pairs and accelerates the
increase of this function for weak pairs. Possible explanations as to why
this increase is not actually observed are given at the end of §2.
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